APPROXIMATE METHOD FOR DETERMINING
NONSTATIONARY ONE-DIMENSIONAL
TEMPERATURE FIELDS

G. A. Gemmerling UDC 536.21:536.422.1

An approximate method for solution of the heat-conduction equation is considered; it can be
used to reduce a boundary-value problem for a partial-differential equation to a Cauchy prob-
lem for a system of ordinary differential equations. A generalization to a problem with un-
known boundary is given.

We shall find the temperature field T(x, t) in a plate at whose surface x = 0 and x =/ the heat fluxes
g4(t) and q,(t) are specified; q;(0) = qy(0) = 0, while T(x, 0) = T,. If the thermal characteristics of the plate
material are constant, the solution can be found by separation of variables [1]:
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We assume that the exact temperature value (£, 7) at the beginning of the time interval 0 =7 = 7, is
of no interest (the temperature may still be small, for example); when 7, =71 =1, however, it is necessary
to obtain a fairly exact solution. Let the heat fluxes be specified as

Gy (7) = 2 a;v, gy (1) = 0. (2)
i=1

We introduce the "approximate solution"
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On the assumption that q,(1) = a7 1, we compare the results obtained from (1), (3), and (4). Figure 1
shows graphs of the functions (91—0)/9 and (8,—-6)/6 for various n, f2, and £ =0. Whenn =1 and f£>1,
when 7> 0.2, the accuracy of (4) is fully satisfactory for practical purposes. When 2> 6-7 and T > 0.2,
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Eq. (3) is also accurate enough. As u increases, the
\\ accuracy of (3) and (4) drops. In this case, however, the
2 \ 2 term a, 7 in (2) makes a significant contribution only
when 7 approaches 1. Within this region of variation of

/\ \ N

\\ \ N7 r, however, Eq. (4) is acceptably accurate. Thus for an
2 N
\\
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~ h ~ - external action of very general type, the approximate re-
~ o~ e lationships (3)-(4) are sufficiently accurate over a wide
o g5 0 o g5 T range of definition of the solution.

Fig.l. Estimatefor accuracy of approximate

" relationships: a)n =1; b)n =5; 7) dimen-
sionless time; A) error in percent; solid
lines) approximate solution; dashed lines) re-
fined solution; curves 1, 2 correspond to
f2=1; f2=3.

Let us use these relationships to solve various
houndary-value problems. In (4) we go over to physical
variables, calculating the surface temperatures T(0, t)
= T,(t) and T(Z, t) = Ty{f), and eliminating the integral
terms in the resulting expressions by differentiating with
respect to t. We obtain
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When o = 0 and « =1, we obtain results corresponding to (3) and (4).

To the equations obtained we add the boundary conditions

g =f (T 1 q=FH(Ts 9. (6)

Equations (5) and (6) form a system of four equations in four unknown functions qq(t), gy(t), Ty(t}, To(t). The
initial conditions are T{(0) = T4(0) = 0. For boundary conditions of the first kind, the known functions Ty(t)
and T,(t) are solved, and we solve two equations of (5) for q;(t) under the zero initial conditions. In both
cases, therefore, the problem reduces to solution of a Cauchy problem for a system of ordinary differential
equations.

To determine the temperature field of a two-layer (multilayer, in general) plate, Egs. (5) must be
written for each of the plates, with allowance for the continuity of the temperature field at the common
boundary. Then to determine the temperatures T, and T, of the surfaces, the temperature T, of the com~
mon boundary, and the heat flux ¢z through it, we have a system of four differential equations that must be
supplemented by boundary conditions.

As we see from Fig. 1, the accuracy of (5) rises rapidly with . Thus we can use the following ap~
proach to refine the solution, We mentally divide the homogeneous plate into two parts with thicknesses
1/2, and employ the equations for determining the temperature field in a two-layer plate. For each part,
the criterion f rises by a factor of 4, and the accuracy of Eqgs. {(5), applied to each of the subplates, in-
creases sharply.

This method can be used to determine the temperature field of a plate at whose surface phase trans-
formations occur. As we see from Fig. 1, the accuracy of Egs. (5) rises rapidly with the time, and after
a certain time At following the beginning of heating, we can assume that (5) is exact. Let us assume that
the physical conditions are such that over the characteristic time At the plate thickness varies by an amount
Al owing to sublimation of the surface layer

Al L. ("N

In this case, in (5) we can replace the constant thicliness ! by the average value 7 over the time At, with
different time intervals corresponding to different I. Thus in (5), the thickness I can be treated as a new
unknown time function. In place of the single condition (8) at the sublimating surface, we have the two con-
ditions

Ty)=Ty=const; g, () =F(Ty, &)+ pi(u+). | ®)
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a ﬂt_);\_’_(_t) Equations (5), (8), and the second equation of (6) form a
; Fmax Xmax system of five equations for determining the five functions Ty,
Ty, g4, 05, [ of the time t. The transition from the solution of
2000\(7 ;" \ (5)~(6) to the system (5), (8), (6) occurs at the time t, at which
- 175 Ty(t;) = Tg. The inverse transition, if it occurs, takes place at
time t,, when I(t,) = 0. After substitution of (8) into (5) for
L(t), we obtain a second-order equation. The missing initial
s 05 condition 7(t;) = io is ordinarily easy to provide by analyzing
/ ’ the physical nature of the problem.
1000 7 =
\éJ \ As an example, let us look at the heating of a protective
3 0 923 heat shield made of a destructible heat-insulating material,
) when a spacecraft enters the denser layers of the atmosphere
Qf; [2]. At the outer surface of the shield we have
0 100 200 7’ at)=fl)—oe,T1, T,<Tgq 9
Fig. 2. Results of solution of Eqgs. (5), - PR 4 i ) _
(9),(10); T) temperature, °K; t) time, aO=1=onls+ollh+20l, Ti=T,.
sec; [) thickness of shield, cm; If heat is transferred radiatively from the ingide surface
curves: 1) Ty(t); 2) Ty(t); 3) I(t); 4) of the shield to the surface of the inner layer of heat insulation
£(t) /fmax; 5) x(t)/xmax; dashed lines) {2], where the temperature varies little, then
T,(t) for solution without division of Go = — 0ty (Th — T). (10)

plate into two parts. .

The functions f(t) and y(t) are determined by the trajec-
tory descent. The system (5), (9)-(10) was solved on a high
speed electronic computer by the Runge —Kutta method. Figure 2 shows a graph of the functions f(t), x(t),
1(t), T(t), T4(t) for the following data:

F(t) = A(1—7)tv% maxf(f) =3.36 Mv/m’; g =0.8; e, =0.4;
% (1) = 23.4-+26.8(1—1)* (v + 1%, Mi/kg; £y =300 sec;
1=0015m; T =1/t.

The properties of the hypothetical shield materials are specified by the following parameters: p
=1350 kg/m?; A =2.1 W/m-deg; c =1.47kJ/kg-deg; u =1 MJ/kg; Tg =2500°K; T, = 300°K.

In form, the functions f(t), x(t) correspond roughly to the first penetration of a spacecraft into the
earth's atmosphere at the second cosmic speed [3].

Comparing the solutions (I,without partitioning of the plate into two parts; II, the refined solution with
fictitious partitioning of the plate) we see that except for the initial 25 sec long segment, solutions I and II
are nearly the same. When [ > 2.0 cm, it is necessary to partition the plate in order to refine the solution.
When [ > 4.0 cm, even this technique does not provide adequate accuracy, and other solution methods must
be employed.

The machine time required to solve one version of the problem with 6t = 2 sec does not exceed 30 sec,
which reduces machine time requirements by a factor of 30-40 as compared with the finite-difference dis-
persion method.

NOTATION
X, £ are dimensioned and dimensionless coordinates;
t, 7 are dimensioned and dimensionless time;
t is the duration of the thermal effect;
1 is the thickness of the plate;
A, D,C,a are the thermal conductivity, density, specific heat capacity, and thermal diffu-
sivity of the material;
T, t), T, are the instantaneous and initial temperatures of the plate;
0 is the dimensionless temperature;
0(&, T, 018, Ty, O,(8, T are the exact, approximate, and refined solutions in dimensionless form;
gq(t), gs(t), ag(t) are the heat fluxes acting on the plate surface;
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are the temperatures of the plate surfaces;

is the coefficient for the expansion of qy{t) into series in powers of t;
ig the exponent in the polynomial used to approximate the heat flux q;
is the sublimation temperature of the material;

is the heat of sublimation;

are known functions:

is the Boltzmann constant;

are the emissivities of the radiating surfaces;

is the integration state;

ig a coefficient that determineg the value of the heat flux.
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